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ABSTRACT
Many online services rely on self-reported locations of user

devices like smartphones. To mitigate harm from falsified

self-reported locations, the literature has proposed location
proof services (LPSs), which provide proof of a device’s loca-

tion by corroborating its self-reported location using short-

range radio contacts with either trusted infrastructure or

nearby devices that also report their locations.

This paper presents ProLoc, a new LPS that extends prior

work in two ways. First, ProLoc relaxes prior work’s proofs

that a device was at a given location to proofs that a device

was within distance 𝑑 of a given location. We argue that these

weaker proofs, which we call region proofs, are important

because (i) region proofs can be constructed with few require-

ments on device reporting behavior as opposed to precise

location proofs which cannot, and (ii) a quantitative bound

on a device’s distance from a known epicenter is useful for

many applications. For example, in the context of citizen

reporting near an unexpected event (earthquake, fire, violent

protest, etc.), knowing the verified distances of the reporting

devices from the event’s epicenter would be valuable for both

ranking the reports by relevance and flagging fake reports.

Second, ProLoc includes a novel mechanism to prevent

collusion attacks where a set of attacker-controlled devices

corroborate each others’ false locations. Ours is the first

mechanism that does not need additional infrastructure to

handle attacks with made-up (virtual) devices, which an at-

tacker can create in any number at any location without any

cost. For this, we rely on a variant of the TrustRank algorithm

applied to the self-reported trajectories and encounters of

devices. Our specific goal is to prevent retroactive attacks
where the adversary cannot predict ahead of time which

fake location it will want to report, which is the case for the

reporting of unexpected events.
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1 INTRODUCTION
Nowadays anyonewith a smartphone can capture, document,

and disseminate news. This collective power to share real-

time, unfiltered, accounts of events is the essence of citizen
journalism. By democratizing the reporting of information,

citizen journalism represents a seismic shift from traditional

media and has been reshaping the landscape of news report-

ing, with social media platforms like Instagram, Facebook,

and Reddit serving as outlets for news dissemination.

Citizen journalism plays a crucial role in offering perva-

sive, on-the-ground perspectives, particularly during crises

or unexpected events. For instance, the Iranian presidential

election protests in 2009 and the Egyptian uprising in 2011

showcased the profound impact of citizen reporting, and its

capability to bypass government censorship and mobilize col-

lective action [2]. Similarly, the 2005 London bombings were

extensively covered by citizens’ on-site photos and videos,

which traditional news outlets later incorporated, recogniz-

ing the value of the information that citizens provided [4].

However, citizen journalism is not subject to the same

journalistic scrutiny as news in mainstream news media.

This means citizen reports may be of varying quality, reflect

bias, and even present an avenue for deliberate propaganda

and misinformation. Therefore, the ability to verify the qual-

ity and legitimacy of citizen journalistic reports is crucial.

However, doing so presents a complex, multi-layered chal-

lenge. We take an important step towards addressing this

challenge: validating the location of geo-tagged reports.

Verifying the geolocation of a citizen at the time of an

event is relevant for both the quality and veracity of the

citizen’s report about the event. First, a verified geolocation

speaks to the quality of the report, because a citizen who

was near the event is more likely to have observed the event

first-hand. Second, citizen journalism is most relevant for

events whose time and location is not predictable (e.g., natu-

ral disasters, accidents, attacks) because mainstream media

and journalists are not likely to be present initially. For such
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reports, a verified space-time location speaks to the authen-

ticity of the report and any associated digitally captured

material (audio, video, still images). This is because an ad-

versary intent on submitting biased or false reports about

such an event would have to have a device physically near

the (unpredictable) time and location of the event, which is

a challenge even for powerful adversaries like troll farms.

Requirements and prior work. Prior work has proposed

several location proof services1 or LPSs that provide indepen-
dent evidence of a device’s (self-reported) geolocation [10,

13, 20, 26, 31, 33, 35, 38]. However, citizen journalism and

similar scenarios place specific requirements on a LPS. First,

the system should be able to generate a location proof for an

arbitrary time and location a user visited. Second, the system

must be robust to collusion attacks that seek to generate

false location proofs using many fictitious devices. Existing

LPSs are not a good match for these requirements. Some

systems depend on radio contact with trusted WiFi base sta-

tions at known locations, which is unlikely to be available

at the location of an unpredictable event [20, 26, 31]. Other

systems instead depend on short-range radio contacts with

nearby devices that can corroborate each others’ location

reports [33, 35, 38]. However, they require radio contact with

nearby devices at the precise time and location in question. If

such radio contacts exits, then a proof for the specific space-

time location is issued; otherwise, no proof can be issued at

all. Lastly, while some existing LPSs include partial defenses

against collusion attacks, none are robust against large-scale

collusion by fictitious devices.

ProLoc. To this end, we present a new LPS, ProLoc. For a
given device 𝑑 , instant in time 𝑡 , and a required number of

witnesses 𝑁 , ProLoc can determine retroactively a feasible
region 𝑆 within which 𝑑 could have been present at time 𝑡 ,

given the evidence collected from 𝑁 witnesses. Witnesses

are unique devices that can independently corroborate 𝑑’s

presence around 𝑡 . ProLoc determines the feasible region by

correlating, during a period around 𝑡 , (1) short-range radio

encounters between 𝑑 and nearby witness devices; (2) the

geolocations recorded by 𝑑 and the witnesses around 𝑡 ; and

(3) uses the transportation network map in and around the

feasible region to see how far a device could have traveled

between radio contacts and geolocation reports.

By weakening (discrete) location proofs to regions proofs,

ProLoc is able to utilize short-range radio contacts and ge-

olocations that were recorded around but not necessarily

precisely at time 𝑡 . Therefore, it is able to produce location

proofs in many scenarios where existing systems cannot. On

the other hand, we will show that region proofs are useful

towards assessing the veracity of citizen journalistic reports.

1
Location proofs are not proofs in the mathematical sense; we adopt the

term because it is used in the literature.

We note that media platforms that support citizen jour-

nalism typically record geolocations periodically reported

by users already. ProLoc additionally relies on Bluetooth

Low Energy (BLE) advert exchanges, which smartphones

can emit and record with high energy efficiency.

LPSs that do not rely on trusted infrastructure are suscep-

tible to collusion attack. In particular, a device can fake radio

contacts with colluding devices to be able to obtain a fake

location proof. ProLoc focuses on retroactive attacks, where
the adversary cannot predict upfront for what time and lo-

cation it wishes to generate a false proof. We consider this

assumption consistent with scenarios like citizen journalism,

which is most relevant for unexpected events —- otherwise,

traditional news websites would have their own journalists

present at the event.

An adversary may create a large number of fictitious de-
vices that can corroborate false location reports. ProLoc en-

ables defences against a large class of these collusion attacks

involving fictitious devices. ProLoc’s defence relies on trust

computations based on devices’ connectivity graph. To the

best of our knowledge, ProLoc is the first infrastructure-less

LPS robust to large-scale retroactive attacks with fictitious

devices.

We believe that ProLoc provides an important step to-

wards enhancing the reliability of citizen journalism report-

ings. ProLoc offers: (i) a practical method to provide re-

gion proofs in hindsight, based on corroborating evidence

recorded around the time of an event; and (ii) the first infra-

structure-less defence against a large class of easy-to-mount

collusion attacks with many fictitious devices, and a limited

number of adversarial physical devices.

This paper’s contribution includes (i) ProLoc, a system that

validates location reports retroactively, and produces region

proofs based on the device’s radio contacts around the time

on question; (ii) an analysis of powerful collusion attacks

and the first defense that can tolerate large-scale collusion,

includingmultiplicity and stalking, without requiring trusted

infrastructure; and, (iii) an experimental evaluation based on

a simulated dataset and on the DTU dataset of locations and

BLE contacts collected from 850 devices over a period of 3

years. In the remainder of this paper, we provide an overview

of ProLoc’s design in § 2. Then, we discuss ProLoc’s API

in §3, which describes howwe consolidate user trajectories to

generate location proofs, and we present our defense against

large-scale collusion attacks in §4.We report an experimental

evaluation of ProLoc in §5 and §6, and discuss related work

in §7.

2 DESIGN PRELIMINARIES

Location proof vs. location provider. A location proof
service (LPS) like ProLoc is orthogonal to a location provider
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service; the two serve different purposes and may provide

different results depending on the scenario. For instance, the

location provider of a smartphone carried by a lone hiker

in a national park may provide location with a precision

of a few meters, which is great for navigation and even to

provide coordinates in an emergency call. However, if the

hiker provides this location to the third party, then, from

the third party’s perspective, the only root of trust for the

location is the hiker’s phone. A location proof service, on the

other hand, could provide at best place the hiker somewhere

in a large feasible region based on the most recent contacts

the phone had at the parking lot and the distance the hiker

could have traveled in the interim. Such a proof could still

be useful if the hiker wishes to subsequently prove to a third

party that they were in or near the park. On the other hand,

the smartphone of a user in a busy downtown hotel not only

obtains a precise location, butmay be able to obtain a location

proof with a tight feasible region placing him within tens

of meters of a hotel, because of its numerous BLE contacts

with a large and diverse set of devices. As a result, the user

can prove, for instance, that they actually were close to the

hotel when they claim to have witnessed a fire in the hotel.

State-of-the-art. As detailed §7, prior work has shown that

devices can obtain location proofs from WiFi APs or from

nearby devices via short-range radio [10, 13, 20, 26, 31, 33,

35, 38]. However, existing systems can attest locations only

when a location proof was obtained a priori from nearby

APs or devices at the time, or in the case of [10], when

a trustworthy device was present at the exact time. Since

proof generation is an expensive operation, it is not feasible

to continuously generate proofs for all locations visited to

anticipate a possible future need. Hence, existing systems

cannot be used to generate location proofs a posteriori (with-
out advance planning), as would be needed in the context

of citizen journalism. In contrast, we designed ProLoc to

generate proofs a posteriori.

To mitigate collusion attacks, some prior work has used

plausibility and consistency checks on device trajectories,

radio contacts, witness selection, and voting record [10, 33,

35, 38]. However, no existing work is robust against collu-

sion attacks involving large numbers of fictitious devices

that corroborate each others’ statements. ProLoc includes

a defense that works against retroactive collusion attacks

even with large numbers of fictitious devices.

ProLoc model. Every device participating in ProLoc locally

stores and periodically uploads its device history, which is

a time series of geographical locations and received near-
range radio transmissions from peers. Locations originate

from the location service of the device’s platform (e.g., iOS

or Android), which typically relies on a combination of GPS,

Figure 1: User device trajectories (colored lines) con-
taining location reports, connected by encounters.

cellular, and WiFi-based methods. Locations are recorded on

a regular basis (e.g., every 5 minutes while a device is on).

Near-range transmissions occur over short-range radio

like Bluetooth Low Energy (BLE). As explained in prior

work [13, 25, 34], near-range transmissions typically take the

form of an ephemeral id, a high entropy value unique to the

transmitting device and epoch. A device history is a time se-

ries of location reports (the device’s trajectory) interspersed

with ephemeral ids received from nearby devices.

An encounter is a period of co-location between two de-

vices, called the encounter peers. Individual received epheme-

ral ids do not directly constitute encounters. An encounter is

indicated onlywhen both peers receive each others’ transmis-

sions regularly for the duration of the encounter. Detecting

encounters requires correlating the histories of potential en-

counter peers by the backend. Encounters tie histories of

different devices to each other, as illustrated in Figure 1.

Assumptions. ProLoc integrates into existing mobile ser-

vices that already collect location histories of devices. ProLoc

requires devices to additionally collect and upload pseudony-

mous transmissions received over near-range radio from

peer devices, and requires the service backend to implement

the location proof algorithm (§3) and the defense against col-

lusion attacks (§4). We note that these services that possess

user location data can already infer periods of co-location;

the addition of BLE data further corroborates these interac-

tions without significantly expanding the platforms’ existing

knowledge on their users.

Devices are expected to upload their history within min-

utes of when events happened, effectively asking devices

to commit to their trajectory and encounters immediately.

Early commitment denies an adversary scope for certain ret-

rospective attacks, where it rewrites the history of devices

it controls to suit emerging objectives. The requirement is

reasonable, because most smartphones are connected con-

tinuously, the bandwidth requirements are modest, and no

user action is required. Late uploads of transmission received

from peers are accepted, but an encounter can be used in a

proof only if at least one of the peers uploaded the encounter

in a timely fashion.
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Our defense against collusion attacks relies on the detec-

tion of suspicious devices based on their connectivity to

other devices. This fundamentally requires knowledge of

some trusted devices as trust anchors. As we will show in

§6, a very small number of devices is sufficient in ProLoc,

and the set of devices can be different for each verifier. A

verifier can choose their set freely from devices they trust,

e.g., devices owned/operated by their own organization.

Power considerations. Location traces can be collected

in a power-efficient manner using standard platform ser-

vices. Sending and capturing BT advertisements in a power-

efficient (and privacy-preserving) manner has been demon-

strated in prior work [25, 34] and is now widely used in

COVID-19 contact tracing apps.

2.1 Key Insights
The key insight behind ProLoc is that continuous collection,

aggregation, and analysis of device locations and encounters

can achieve properties not available in existing systems:

1) ProLoc can provide a feasible region for each instant
along a device’s trajectory a posteriori. To compute this

region at instances when a device did not encounter other de-

vices, ProLoc extrapolates from the closest previous and next

confirmed locations and themaximal distance the device may

have traveled in the interim. To compute this region, ProLoc

intersects isochrones obtained from the OpenStreetMap [7]

service. An isochrone bounds the set of locations reachable

from a starting point within some period, in any direction,

given the topology of the road and transportation network

and the feasible speed of travel along each route.

2) ProLoc can mitigate retroactive collusion attacks
involving fictitious devices. Because ProLoc requires de-
vices to upload and thereby commit to their locations and

encounters in a timely fashion, an attacker faces the diffi-

culty of having to produce plausible device trajectories and

encounters that afford its devices enough trust to appear

legitimate, and are suitably positioned for an attack. More-

over, we sketch how the defense can be extended to cover

premeditated collusion attacks as well.

3 PROLOC SERVICE
ProLoc’s backend allows any participating device, called the

prover, to prove a posteriori to a third-party, the verifier, that
it was within a given region 𝑆 at time 𝑡 . The backend’s only

API call, prove_loc(𝑑, 𝑆, 𝑡, TA, 𝑁 ), returns true when ProLoc
is able to prove that device 𝑑 was definitely within region 𝑆

(specified as a bounding polygon on amap) at time 𝑡 and false

otherwise. The parameters 𝑆 , 𝑡 , TA and 𝑁 are determined by

the verifier. TA and𝑁 are needed for ProLoc’s defense against

collusion attacks (§4). TA is a (small) set of trust anchors –

devices that the verifier knows to be honest. As explained

in §4, ProLoc uses TA to seed a TrustRank algorithm which

identifies suspicious devices. 𝑁 is the number of encounter

peers which independently corroborate 𝑑’s presence in 𝑆 at

time 𝑡 . A higher 𝑁 increases ProLoc’s robustness to collusion

attacks, but may also increase the sizes of regions 𝑆 for which

location proofs can be successfully found.

To answer the call prove_loc(𝑑, 𝑆, 𝑡, TA, 𝑁 ), ProLoc’s back-
end picks 𝑀 > 𝑁 non-suspicious device peers which re-

ported encounters with 𝑑 close to time 𝑡 . These peers, called

potential witnesses, are denoted𝑤1, ...,𝑤𝑀 here. For each po-

tential witness𝑤𝑖 , the backend computes a region𝑅𝑖 in which

𝑑’s presence at time 𝑡 can be established using information

from𝑤𝑖 alone:𝑤𝑖 ’s location history and its encounters with

𝑑 . If 𝑅𝑖 is contained in 𝑆 , then the potential witness 𝑤𝑖 is a

valid witness for the proof. The call prove_loc(𝑑, 𝑆, 𝑡, TA, 𝑁 )
returns true (successfully) if and only if the backend finds at

least 𝑁 valid witnesses, i.e., if the union of some 𝑁 regions

out of the 𝑀 regions 𝑅1, . . . , 𝑅𝑀 is contained in 𝑆 . The 𝑁

valid witnesses form the proof’s quorum and this union is

called 𝑑’s feasible region at time 𝑡 .

The region 𝑆 may be a circle specified as a center and

radius, (𝜃, 𝑟 ). The API call prove_loc(𝑑, (𝜃, 𝑟 ), 𝑡, TA, 𝑁 ) then
asks, “Can 𝑁 devices’ histories independently confirm that

𝑑 was present within distance 𝑟 of the point 𝜃 at time 𝑡?”

In this case, we also call 𝑟 the precision. Note that smaller 𝑟

correspond to better precision.

For privacy reasons, a device may ask only for its own

location proofs, i.e., a device may act as prover only for itself.

However, ProLoc cryptographically signs the result (true or

false) of the call together with the parameters to allow the

device to prove its location to the verifier.

Next, we describe ProLoc’s proof algorithm in detail.

Notation.We use the letter 𝜃 and its variants like 𝜃 ′, 𝜃𝑤 , etc.
to denote points on a map. Similarly, we use 𝑡 to denote time

points, 𝑟 to denote lengths, and 𝑅, 𝑆 for regions.

Mapping service. ProLoc relies on a map service like Open-

StreetMap [7]. This service provides a call isochrone(𝑅,𝑇 )
which returns the entire region a device could have reached

in time𝑇 starting somewhere in region 𝑅 using any available

means of transport at the fastest speeds possible.

ProLoc’s algorithm. To answer the call prove_loc
(𝑑, 𝑆, 𝑡, TA, 𝑁 ), ProLoc first uses the encounter selection al-
gorithm described later to select encounters 𝐸1, . . . , 𝐸𝑀 that 𝑑

hadwith distinct peers in the vicinity of time 𝑡 . Let𝑤1, . . . ,𝑤𝑀

be the respective encounter peers (these are the potential

witnesses). For each 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑀 , ProLoc uses the function

r_peer(𝐸𝑖 , 𝑑) described below to construct a region 𝑅𝑖 in

which 𝑑’s presence at time 𝑡 can be established from infor-

mation provided by𝑤𝑖 alone. Next, for each 𝑖 , ProLoc checks
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Figure 2: Pseudocode of prove_loc. Dbase is ProLoc’s
internal database, and Map is the map service.
API call prove_loc(𝑑, 𝑆, 𝑡, TA, 𝑁 )
# Compute region for 𝑑 w.r.t. a single peer location

function r_peer_loc(𝑡𝑒 , 𝑡𝑤, 𝜃𝑤):
𝑅
𝑡𝑒
𝑑𝑤
← Map.isochrone({𝜃𝑤}, |𝑡𝑒 − 𝑡𝑤 |)

𝑅
𝑡𝑒
𝑑
← Map.grow_region(𝑅𝑡𝑒

𝑑𝑤
, 𝑟𝐵𝐿𝐸)

return(Map.isochrone(𝑅𝑡𝑒
𝑑
, |𝑡 − 𝑡𝑒 |))

# Compute region for 𝑑 w.r.t. a single peer encounter

function r_encounter(𝐸𝑖 , 𝑑):
𝑤 ← 𝐸.other_peer(𝑑)
𝑡𝑒 ← 𝐸.timeof()
(𝜃𝑤, 𝑡𝑤) ← Dbase.prev_location_report(𝑑𝑤, 𝑡𝑒 )
(𝜃 ′𝑤, 𝑡 ′𝑤) ← Dbase.next_location_report(𝑑𝑤, 𝑡𝑒 )
𝑅 ← r_peer_loc(𝑡𝑒 , 𝑡𝑤, 𝜃𝑤)
𝑅′ ← r_peer_loc(𝑡𝑒 , 𝑡 ′𝑤, 𝜃 ′𝑤)
𝑅𝑖 ← 𝑅 ∩ 𝑅′

return(𝑅𝑖 ,𝑤)
# Top level code

[𝐸1, . . . , 𝐸𝑀 ] ← Dbase.encs_select(𝑑, 𝑡, TA)
𝑄 ← ∅ # Quorum; 𝑅𝐹 ← ∅ # Feasible region

for 𝑖 in 1 . . . 𝑀 :

(𝑅𝑖 ,𝑤𝑖 ) ← r_encounter(𝐸𝑖 , 𝑑)
if 𝑅𝑖 ⊆ 𝑆 then { 𝑄 ← 𝑄 ∪ {𝑤𝑖 }; 𝑅𝐹 ← 𝑅𝐹 ∪ 𝑅𝑖 }

if |𝑊 | ≥ 𝑁 then return(true) else return(false)

whether 𝑅𝑖 is contained in 𝑆 or not. If it is contained, then

ProLoc has found a valid witness. The algorithm stops with

success if 𝑁 valid witnesses are found, else it ends in failure.

Figure 2 summarizes the algorithm.

Function r_peer(𝐸𝑖 , 𝑑). Let 𝑡𝑒 be the time at which en-

counter 𝐸𝑖 happened and let 𝑤 be the encounter peer (the

potential witness). Let 𝜃𝑤 and 𝜃 ′𝑤 be the self-reported loca-

tions of𝑤 preceding and following 𝑡𝑒 , and let these locations

be reported at times 𝑡𝑤 and 𝑡 ′𝑤 , respectively.
We start from one of 𝑑𝑤 ’s location reports, say, 𝜃𝑤 at time

𝑡𝑤 . We determine a possible region 𝑅
𝑡𝑒
𝑑𝑤

for 𝑑𝑤 (not 𝑑) at the

time of the encounter, 𝑡𝑒 . Since𝑤 was at 𝜃𝑤 at time 𝑡𝑤 , this

region is simply 𝑅
𝑡𝑒
𝑑𝑤

= isochrone({𝜃𝐴}, |𝑡𝑒 − 𝑡𝑤 |).
Next, we compute a possible region 𝑅

𝑡𝑒
𝑑
for 𝑑 (not 𝑑𝑤) at

time 𝑡𝑒 . Since 𝑑 encountered 𝑑𝑤 at this time, 𝑑 must have

been within BLE range, say 𝑟𝐵𝐿𝐸 meters, of 𝑑𝑤 at time 𝑡𝑒 . So,

𝑅
𝑡𝑒
𝑑
is obtained by expanding the region 𝑅

𝑡𝑒
𝑑𝑤

on the map by

𝑟𝐵𝐿𝐸 . Then, we compute a possible region 𝑅 for 𝑑 at time 𝑡

as 𝑅 = isochrone(𝑅𝑡𝑒
𝑑
, |𝑡 − 𝑡𝑒 |).

We repeat this process with 𝑑𝑤 ’s second reported location

𝜃 ′𝑤 at time 𝑡 ′𝑤 . This yields a second possible region 𝑅
′
for 𝑑 at

time 𝑡 . Since 𝑑’s location at time 𝑡 is constrained by both 𝑅

and 𝑅′, the required region 𝑅𝑖 is the intersection 𝑅𝑖 = 𝑅 ∩ 𝑅′.
Figure 3 illustrates this computation diagramatically.

Figure 3: Feasible region (shaded) w.r.t. one witness𝑤 .

Encounter selection algorithm. The encounter selection
algorithm, denoted encs_select(𝑑, 𝑡, TA), selects encoun-
ters of 𝑑 with distinct non-suspicious devices in the vicinity

of time 𝑡 and location 𝜃 . ProLoc first runs the TrustRank

algorithm described in §4 seeded with the trust anchors TA
to mark suspicious-looking devices. (ProLoc caches results

of TrustRank. All subsequent calls with the same TA and, in

particular, all subsequent calls from the same verifier reuse

this result without recomputing TrustRank.)

Next, we find all encounters of 𝑑 in a large time win-

dow [𝑡 − 𝑎, 𝑡 + 𝑎] centered at 𝑡 (𝑎 is fixed to e.g., 5 mins).

We remove encounters with suspicious-looking peers and

sort the remaining encounters ascending by the following

function 𝑓 . The sorted list of encounters is the output of

encs_select(𝑑, 𝑡, TA).
𝑓 = |𝑡𝑒 −𝑡 | +min( |𝑡𝑒 −𝑡𝑤 |, |𝑡𝑒 −𝑡 ′𝑤 |) +

min( |𝜃 − 𝜃𝑤 |, |𝜃 − 𝜃 ′𝑤 |)
𝑣

Here, 𝜃 is the self-reported location of the device 𝑑 at time 𝑡 ,

𝑡𝑒 is the time of the encounter, 𝜃𝑤 and 𝜃 ′𝑤 are the reported

locations of the encounter peer preceding and following the

encounter, 𝑡𝑤 and 𝑡 ′𝑤 are the respective timestamps of these

location reports, and 𝑣 is the average travel speed in the

vicinity of 𝜃 according to the map service. The function 𝑓

embodies the fact that an encounter constrains 𝑑 more if: (i)

the time between 𝑡 and the encounter is less (term |𝑡𝑒 − 𝑡 |),
(ii) the encounter peer has reported a location closer in time

to the encounter (term min( |𝑡𝑒 − 𝑡𝑤 |, |𝑡𝑒 − 𝑡 ′𝑤 |)), and (iii) the

reported peer location is close to 𝑑’s actual location 𝜃 (term

min( |𝜃 − 𝜃𝑤 |, |𝜃 − 𝜃 ′𝑤 |)).
Precision. The smallest region 𝑆 that yields a successful

proof depends on four factors: (1) 𝑁 : Higher values of 𝑁

provide more collusion resistance but prevent a successful

proof for small 𝑆 , (2) Local encounter density: If the proving

device has many encounters in the spatio-temporal vicinity

of the proof location, then the precision is likely to be better,

(3) 𝑟𝐵𝐿𝐸 : In places where BLE encounters are limited to small

distances due to obstacles and noise, precision will be worse,

and (4) Location reporting frequency: Precision is better

when the proving device’s peers report locations frequently.

In practice, 𝑟𝐵𝐿𝐸 is determined empirically by measuring

the effective BLE range in different conditions and choosing
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an upper bound. Devices should be programmed to report

locations at a fixed interval, also determined empirically.

Peer privacy. The success of a location proof reveals one

bit of information about the witnesses’ previous and next

locations to the prover and the verifier. To prevent the leak-

age of witness trajectories using repeated proof calls, ProLoc

rate-limits calls to its API from every prover.

4 DEFENDING AGAINST RETROACTIVE
COLLUSION ATTACKS

An adversary’s goal in attacking a LPS is to prove that a

device it controls was at a target space-time location where

it was actually not present, e.g., to fraudulently prove that

they eye-witnessed an event. An attack is called premeditated
if the adversary knows ahead of time where it will need a

location proof later. To mount a premeditated attack, the

adversary only needs a few real-looking colluding devices

that – correctly or falsely – report presence at the target

location and encounters with the target device around that

location. Defending such attacks fundamentally requires

additional infrastructure, as has been proposed in prior work

(see §7). However, premeditated attacks are less relevant for

use cases like citizen journalism, where the focus is often on

unexpected events whose location and time the adversary

cannot predict in advance.

Consequently, we focus on defending against the com-

plementary class of retroactive attacks where the adversary
cannot predict the space-time location of interest in advance.

Mounting such an attack successfully requires continuous

presence of adversarial devices at all locations of potential

interest. In turn, this requires the adversary to control or

simulate a very large number of devices.

Adversarial devices. To mount a retroactive attack, the

adversary may deploy three kinds of (adversarial) devices. (i)

Corrupt devices are real devices that the adversary controls

at least partially. For a subset, it may even control physical

whereabouts. (ii) Sybil devices, or Sybils, are virtual devices
hosted on corrupt devices (e.g., rotating IDs on a phone). (iii)

Fictitious devices, have no correspondence to an actual device.
They are make pretend devices that report like real devices.

The term virtual device includes both Sybil and fictitious

devices. (In contrast, we use the term honest device for any
device that is not controlled by the adversary.)

All types of adversarial devices can report false location

trajectories and false encounters with other adversarial de-

vices to enable (retroactive) attacks. Additionally, corrupt and

Sybil devices can form real encounters with honest devices,

but only along their real physical trajectories (the honest

peer will not confirm a false encounter). Fictitious devices

cannot form any encounters with honest devices.

Assumptions. Corrupt devices cost the adversary effort and
money, so we assume that their number is limited. Virtual

devices cost nothing, so we do not make any assumption

on their number. Consequently, a successful defense against

retroactive attacks must identify most virtual adversarial

devices. The defense we present here does exactly this.

Key insight. ProLoc’s defense relies on the insight that, even
though the adversary can fabricate any number of virtual

devices with arbitrary trajectories and encounters among

themselves, any encounters between this virtual world and

the world of honest devices are limited to corrupt and Sybil

devices. Consider a graph of device encounters (Figure 1). In

such a graph, the subgraphs representing the virtual devices

and honest devices form clusters that are connected only by

encounters involving corrupt and Sybil devices. Since we

assume that the adversary is limited to a small number of

corrupt devices and our defense limits the utility of Sybils

(as explained later), these encounters will form a small cut

between the adversarial and honest devices in the graph.

To arrive at a defense, we adapt the literature on random-

walk-based approaches to detect virtual devices [9, 23] and

ban them from quorums. We use a particular random walk,

namely, the TrustRank algorithm [19]. We modify TrustRank

to prevent Sybils from artificially increasing the cut between

the real and virtual worlds. This allows us to recognize most

fictitious devices immediately (i.e., our defense has high re-

call). Furthermore, our approach limits the number of Sybils

an attacker can maintain without detection. In combination

with a large enough𝑁 , this allows ProLoc to mitigate retroac-

tive attacks effectively. While we did not design our defense

for attacks where the adversary’s goal is to reduce the preci-

sion of location proofs of honest devices, our defense does,
in fact, prevent such attacks.

4.1 ProLoc’s Defense

Recap of TrustRank.The original TrustRank algorithm [19]

takes as input a directed graph with positive edge weights,

and an initial set of trusted nodes (which we denoted TA in

§3). It computes the answer to the following question: If (a) a

random walk on the graph begins at a random trusted node,

(b) at each step choosing to continue with a probability 𝛼 , by

traversing an outgoing edge with probability proportional

to the edge’s weight, then, what is the probability that it will

end at any given node? This ending probability assigned to

each node is the node’s TrustRank score. Naturally, nodes

connected to trusted nodes only via low-weight cuts have

lower scores compared to nodes connected to trusted nodes

via high-weight cuts. So, TrustRank distinguishes these two

kinds of nodes from each other.
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Our use of TrustRank. We apply TrustRank to the en-
counter graph whose nodes are devices and which has a

directed edge from device 𝑔 to 𝑑 if 𝑔 received at least one

BLE advert from 𝑑 . (Note that edges are oriented opposite to

the direction of adverts.) We seed TrustRank with the set of

trusted devices TA provided by the verifier. We first explain

how we use this setup for our defense assuming there are

no Sybil devices (the only virtual devices are fictitious), and

then explain how we handle Sybil devices.

In the absence of Sybils, the width of the cut between

the honest and fictitious devices is low since it is limited by

the number of corrupt devices, which is assumed to be low.

Hence, in the absence of Sybils, we can run the TrustRank

algorithm described above with the edge weight from 𝑔 to 𝑑

set to the number of 𝑑’s adverts received by 𝑔. This results in

TrustRank scores with a bimodal distribution, with fictitious

devices receiving significantly lower scores than real devices.

To actually classify devices as real or fictitious, we au-

tomatically determine a threshold that separates the two

modes, and classify all devices with scores above the thresh-

old as non-suspicious (likely real) and those below as suspi-

cious (likely virtual). The threshold is determined by max-

imizing the sum of the percentages of true positives (real

devices classified as non-suspicious) and true negatives (fic-

titious devices classified as suspicious) on a synthetic en-

counter graph that contains data from a set of devices which

have been verified offline as being real (or not), and a set of

synthetically generated attacker devices for different syn-

thetic attack scenarios described in §6.2. We show in §6.2

that honest and fictitious devices are so well-separated by

TrustRank scores on a real dataset that simulating a few

attacks is actually sufficient for determining this threshold,

even when the attack(s) occurring in reality are unknown.

Handling Sybils. Sybils can defeat the defense described

so far: A small number of corrupt devices can broadcast

the identifiers of any number of Sybil devices in repeated

succession, thus increasing the cut-width between the real

and fictitious devices to any extent. To defeat such attacks, we

use a novel edge-weighting scheme that strongly penalizes

large numbers of Sybils. We rely on the insight that Sybils

on a single host appear to form concurrent encounters with

nearby devices in such attacks. Our edge-weighting scheme

heavily penalizes the contribution of concurrent encounters

to edge-weights.

For each device, we divide the time series of received BLE

adverts into epochs of fixed duration (e.g., 8 min). We call

two adverts received by a device concurrent if they are in

the same epoch. Next, we compute the weight of the edge

from device 𝑔 to device 𝑑 , written 𝑒 (𝑔,𝑑), as follows: For each
epoch in which 𝑔 received an advert from 𝑑 , we add to 𝑒 (𝑔,𝑑)
1 divided by the number of devices from which 𝑔 received

concurrent adverts raised to a power 𝐿, for a fixed 𝐿 > 1.
2

𝑒 (𝑔,𝑑)≜
∑︁

𝐸 ∈ epochs

if (𝑔 recd. advert from 𝑑 in 𝐸) then 1 else 0

(# devices from which 𝑔 recd. adverts in 𝐸)𝐿

To understand the effectiveness of the method, suppose

that a corrupt device with𝑚 Sybils encounters a device 𝑔

in an epoch where 𝑔 receives adverts from 𝑡 other devices.

Then, each Sybil ends up getting an incoming edge weight

1/(𝑡 +𝑚)𝐿 from 𝑔 in this epoch and the𝑚 Sybils together

get an incoming edge weight of𝑚/(𝑡 +𝑚)𝐿 from 𝑔 in this

epoch. When 𝐿 > 1, this function tends to 0 very quickly

for large𝑚. Hence, by creating a large number of Sybils𝑚,

the adversary lowers the incoming edge weights its Sybils

receive from 𝑔 in the epoch, relative to the incoming edge

weights received from 𝑔 by other devices in epochs where 𝑔

encountered honest devices only. Since the total TrustRank

score that the Sybils – and, hence, the entire virtual world –

gets is proportional to the Sybils’ total incoming edge weight

relative to the total incoming edge weight of all devices

encountered by 𝑔 over time, it is in the adversary’s interest

to pick small𝑚, i.e., to limit the scale of its Sybil attack.

We show experimentally in §6.2 that by setting 𝐿 = 3, we

can detect nearly all fictitious devices even in the presence

of strong adversaries that corrupt up to 0.5% of real devices.

End-to-end defense. This leaves the adversary with only

corrupt and Sybil devices at its disposal. Corrupt devices are

limited in number by assumption. As for Sybils, the ideal

strategy for an attacker in the face of our edge-weighting

scheme is to rotate them at the granularity of epochs, in a

way that they all get roughly equal TrustRank scores. If the

average TrustRank score of real devices (including corrupt

devices) is 𝑠 and the TrustRank threshold determined above is

𝑇 , then the adversary can sustain up to 𝑠/𝑇 Sybils per corrupt

device with this strategy. In §6.2, we show that this ratio is

around 10.6 for a real dataset. With this, if the adversary can

corrupt 𝑐 devices, it ends up with 𝑐𝑠/𝑇 adversarial devices. In

fact, we prove that the total TrustRank across all adversarial

devices is bounded by a constant factor of the sum of the

TrustRanks corrupt devices can collect:

Theorem 4.1. The sum of the TrustRank of attacker devices
is at most proportional to the sum of the TrustRank of corrupt
devices.

Proof. TrustRank of a device can be characterized as the

probability that a random walker halts on the device, given:

• The walker begins on a (uniformly random) trusted

device.

2
This edge-weighting scheme is a slight simplification of our actual scheme,

which uses continuous time and an integral instead of discrete epochs and a

sum over epochs. Continuous time gets rid of epoch-boundary effects. The

actual scheme is explained in appendix A .
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• At each step, the walker proceeds with some probabil-

ity 𝛼 , and halts with probability 1 − 𝛼 .
• At each step, if the walker proceeds, it steps to a neigh-

boring device with probability proportional to edge

weight (defined above).

Since trusted devices are real, and the only attacker devices

that encounter real devices are corrupt devices, a random

walker that halts on an attacker device must have (at some

point) stepped to a corrupt device.

Therefore the probability that a random walker halts on an

attacker device is, at most, the probability that a random

walker steps to any corrupt device.

TrustRank is bounded by a constant factor of step proba-
bility. A random walker that steps to a device has at least

a 1 − 𝛼 probability of halting on a that device. Therefore

the TrustRank of a device is at least 1 − 𝛼 (which is a con-

stant) times the probability that a random walker steps to

that device.

Therefore, the probability that a random walker steps

to any corrupt device is at most proportional to the sum

of the TrustRank of corrupt devices. This in turn implies

that the sum of the TrustRank of attacker devices is at most

proportional to the sum of the TrustRank of corrupt devices.

□

To limit how successfully an adversary can launch a retroac-

tive attack, ProLoc additionally relies on the parameter 𝑁 .

With 𝑐𝑠/𝑇 colluding devices as described above, the adver-

sary can hold a quorum of 𝑁 adversarial devices at no more

than 𝑐𝑠/(𝑇 · 𝑁 ) locations simultaneously. Just by way of

example, an adversary that corrupts 𝑐 = 5 devices, setting

𝑁 = 10, with 𝑠/𝑇 = 10.6 as for our dataset, the adversary

can cover only four locations at a time. To be successful in

a retroactive attack, the adversary would have to correctly

narrow its guess of the locations that could be relevant for

an attack in the future to just a set of four.

Possible extension to premeditated attacks. Recall that

in a premeditated attack, the adversary may move a quorum

of adversarial devices to the target location on demand. Here,

the small number of adversarial devices permitted by Pro-

Loc’s defense are sufficient for such an attack. While beyond

the scope of this paper, the key to a defense against pre-

meditated attacks that does not require infrastructure is to

prevent the adversary from moving Sybils from the actual lo-

cations of the corrupt devices (which it cannot easily choose)

to the target location, while maintaining their trust levels.

One way to accomplish this is to diminish trust whenever a

device moves in space-time, another is to tie trust to certain

spatial zones of validity. A full design and evaluation of such

a defense remains future work.

5 DATASETS
ProLoc takes as input the device history of each participating

device. The device history is a time series of locations and

BLE receptions from nearby devices (§2). In this section, we

introduce the datasets we use in the experimental evaluation

of §6: a simulated dataset and a real-world dataset.

Simulated dataset. We use a mobility simulator from prior

work [11] together with OpenStreetMap data [7] to synthe-

size device locations and encounters in Copenhagen over

a 15-day period. This involves three main steps: (i) we use

the simulator to create a list of (hypothetical) users living

in various Copenhagen neighborhoods, in accordance with

Meta’s publicly available data on population density, house-

hold, and age demographics [8]; (ii) we use OpenStreetMap

data to identify places of interest (POIs) on the map, labeled

according to their location type (e.g., supermarkets, schools,

train stations); (iii) we use the simulator and Meta’s pub-

licly available mobility models (which provide the frequency

of visits to each location type for different age groups) to

synthesize individuals’ mobility traces as a series of visits

to POIs. A visit is a four-tuple consisting of a user device

ID, a location or POI, a visit start time, and a visit end time.

A user selects among POIs of the same location type with

frequency inversely proportional to the distance between the

user’s home and the respective POIs—the so-called gravity

model [21].

Location dataset. While at a POI, a user device records

its location with a given average frequency, which we vary

in our experiments from 1 to 5 minutes. Each record is a

triple (device ID, location, timestamp). Devices do not record

locations at home and in transit; this limited recording of

locations is conservative as it makes our evaluation results

worse than they would be had user devices continuously

recorded locations. All the location records of a device con-

stitute its location history.

Encounters. We cannot simulate individual BLE adverts

because successful receipt of a BLE transmission is highly

dependent on the physical environment, which is not cov-

ered in the mobility models we use. Instead, we adopt a

conservative approach: we assume that if two devices re-

main within 𝑟𝐵𝐿𝐸 = 50m of each other for at least 5 minutes,

then each of them will receive at least one BLE advert from

the other, thereby establishing a mutual encounter. Our en-

counter dataset is the list of all such encounters represented

as triples (device ID1, device ID2, timestamp), where times-

tamp is the midpoint of the time period during which the

devices were in proximity.

In practice, not everyonewill adopt ProLoc, so we generate

mobility (location and BLE receipt) traces for only a chosen

percentage of randomly chosen users (the adoption rate).
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As an example, for an adoption rate of 20% and an average

location reporting frequency of 3 minutes, our dataset has

128,882 unique participating devices (users), which together

produce 72,905,340 location reports and 19,343,782 pairwise

encounters. Over 15 days, each device participates in 150

encounters on average (min: 0, median: 106, max: 3,000) and

provides 565.67 location reports on average (min: 33, median:

543, max: 2,670).

Real-world dataset. As mentioned above, we cannot sim-

ulate individual BLE adverts. Thus, to evaluate TrustRank,

which relies on individual adverts, we use the SensibleDTU [5]

dataset of BLE adverts from Danmarks Tekniske Universitet

(DTU), Copenhagen.
3
The data was collected from March

2013 to August 2016 by DTU students carrying LG Nexus 4

phones, which supported Bluetooth 4.0 with A2DP. These

devices collected BLE adverts using the OpenSensing [6]

app for Android 4.2.2. In particular, the phones ran the data

collector in the funf-v3 repo. The phones broadcasted unique

device ids every 200ms, and processed all received adverts in

batches. Phones periodically requested a new location from

their location service and recorded them.

A total of 850 phones reported a total of 40.8M adverts

received from other participating devices. Each entry in-

cludes the device ids of receiver and sender, and a timestamp.

Each device recorded on average 48k adverts (min: 7, median:

38.4k max: 247.5k). Active devices wake up every 5 minutes

and process any received BLE adverts, timestamping them

at the moment of processing. Consequently, the distribution

of time intervals between recorded batches for each device

is very tightly clustered around 5min, with the 75th and 95th

percentile at 5min and 20min, respectively.

6 EVALUATION
In this section, we present results of our experimental evalu-

ation. We ran ProLoc on an Intel(R) Xeon(R) CPU E7-8857 v2

@3.00GHzmachine (4 sockets, 12 cores/socket, 1 thread/core)

with 1.48TB RAM, running Debian 11. TrustRank and the

location proof algorithm are implemented in Python. Loca-

tion proofs use OpenStreetMap graphs via the OSMnx 1.1.2

package [1]. Next, we show how location proof precision is

affected by the encounter density and 𝑁 . In §6.2, we show

the effectiveness of ProLoc’s defense against retroactive col-

lusion attacks.

6.1 Location Proof Precision
Our objective is to understand how the location proof preci-

sion varies with the number of required verifiers 𝑁 (higher

𝑁 should reduce precision), the average location reporting

3
Data collection, anonymization, and storage were approved by the Danish

Data Protection Agency. One of the authors had access to the dataset under

a collaboration agreement with DTU.

frequency of devices (higher frequency should improve pre-

cision) and the temporal encounter density at the location

of the proof (higher encounter density should improve pre-

cision). A fourth factor, the ProLoc adoption rate, affects

precision indirectly by shifting the distribution of temporal

encounter densities: a higher adoption rate shifts the dis-

tribution towards higher encounter densities, and, hence,

should result in improved precision on average.

We report on experiments with our simulated dataset,

which is representative of individuals’ mobility and encoun-

ters in an actual city. In all experiments, we ask for proofs

that a device was within a circular region with a given center

(which coincides with the location the device was visiting

per our simulation) and a given radius 𝑅, which represents

the precision. For each proof, encounter selection is set to

find all encounters in a window of 10 minutes (𝑎 = 5 in the

encounter selection algorithm). Our graphs show the min-

imum radius 𝑅 (the highest precision) for which we could

find a proof.

Effect of 𝑁 . Figure 4 shows the 10th-, 50-th, and 90th-

percentiles of the attainable precision radius 𝑅 as a function

of 𝑁 in several different experimental settings (varying the

average location reporting frequency, the encounter density

and the adoption rate). The percentiles are estimated by run-

ning the algorithm of §3 on 5,000 randomly sampled visits

in the respective experimental settings.

In all experimental settings, 𝑅 increases with 𝑁 , show-

ing (as expected) that the precision reduces as the required

number of independent verifiers increases.

Effect of the average location reporting frequency.Next,
we explore the effect of the average location reporting fre-

quency on the relation between 𝑅 and 𝑁 . Each graph of Fig-

ure 3a shows the 10th-, 50th- and 90th percentiles of 𝑅 as

a function of 𝑁 for a different average location reporting

frequency – 1 min, 3 min or 5 min. The adoption rate is fixed

at 20% across the three graphs, and samples are drawn from

visits with encounter densities close to the median density

for this adoption rate (11 encounters in 10 minutes).

The distribution of precision radii (for any given 𝑁 ) shifts

to the higher side as the frequency of location reports in-

creases from 1 to 5 minutes. This is also expected because,

when peer location reports bracketing an encounter are far

apart in time, the location proof algorithm of §3 results in

larger isochrones.

As an example, for an average location reporting fre-

quency of 3 min, which is a reasonable trade-off between

conserving device battery and proof precision, the median

of the attainable precision varies from 𝑅 = 75m for 𝑁 = 1

to 𝑅 = 500m for 𝑁 = 5. This shows that proofs of reason-

able precision are obtainable even with a 20% adoption and

location reports as far apart as 3 min on average.
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Effect of encounter density.Next, we consider the effect of
encounter density. For this experiment, we fix the adoption

rate and average location reporting frequency at 20% and 3

min, respectively. The three graphs of Figure 3b show the

percentiles of 𝑅 for samples drawn from visits with different

encounter densities: 20, 40 and 50 encounters in 10 mins. As

expected, for any given 𝑁 precision radii are smaller (better

precision) when the encounter density is higher.

Effect of adoption rate. Finally, we explore the effect of
varying adoption rate on the relation between 𝑅 and 𝑁 . The

three graphs of Figure 3c show the relation between 𝑅 and 𝑁

for three different ProLoc adoption rates – 10%, 20% and 40%.

The average location reporting frequency is fixed at 3 min,

and the encounter density is set to the median encounter

density for the respective adoption rate. We observe that for

a fixed 𝑁 , 𝑅 reduces as the adoption rate increases. This is

in line with what we expect – as the adoption rate increases

from 10% to 40%, the median encounter densities increase

from 9 encounters in 10 minutes to 14 encounters in 10

minutes and the distribution of 𝑅 shifts downwards (higher

precision) accordingly.

Summary. From these experiments, we conclude that con-

structing location proofs with a precision of hundreds or

even tens of meters is possible for reasonable values of 𝑁

(upto 10), reasonable location reporting frequencies (3 min-

utes on average), and moderate adoption rates (20%).

6.2 TrustRank
Next, we evaluate the effectiveness of TrustRank in iden-

tifying fictitious and Sybil devices. Here, we use only the

real-world dataset because our TrustRank algorithm relies

on individual adverts, which are not available in our simu-

lated dataset. Our real-world dataset includes only honest

devices so, for this evaluation, we simulated several (in some

ways optimally) powerful attacks on top of the real-world

dataset.

Simulated attacks on the real-world dataset. In each

attack, we first mark a number 𝑐 = 1, 2, 4 or 8 of randomly

chosen devices from among the 850 devices as corrupt. Since
they are randomly chosen from honest devices, corrupt de-

vices’ behavior is fundamentally indistinguishable from hon-

est behavior.

We then simulate𝑚 Sybil devices on each corrupt device,

varying𝑚 from 1 to 128. We replicate every advert in the

dataset whose source is a corrupt device to every Sybil on

that device, thus simulating the Sybil attack of §4, which

gives the Sybils as many real encounters as possible.

Finally, for every device in our original dataset, we add an

adversary-created fictitious device, which acts as its doppel-

gänger. The doppelgängers mimic the pairwise encounters

and reported locations of the real devices. This is a very pow-

erful attacker that controls as many devices and uploads as

much data as the real world. What’s more, the behaviour of

the fictitious devices is indistinguishable from that of honest

devices. Without some trusted devices, there is no way to

know which encounter subgraph is honest, and which is

fictitious: they’re symmetric.

Whenever a corrupt device receives an advert from a real

device, it also receives an advert from the corresponding

doppelgänger. Trust flows from the real world to the fictitious

world along these bridging adverts through corrupt devices.

Overall, we simulate strong attacks where the attacker

corrupts up to 8 real devices (1% of all devices), uses Sybils

and uploads a fictitious world as large as the real world.

TrustRank.We randomly mark 10 devices as trusted, run

TrustRank on the encounter graphs for each of the above

scenarios (we empirically picked the exponent 𝐿 = 3 for our

edge weighting), and report our observations. (TrustRank is

actually very robust to the initial choice of trusted devices so

verifiers have a wide choice in the number and set of trusted

devices they pick for location proofs. We experimented with

different sets of trusted devices, ranging in size from 1 to 16,

and the results were very similar in all cases.)

TrustRank threshold. We first examined the distributions

of TrustRank scores of honest and attacker (corrupt, Sybil

and fictitious) devices in different attack scenarios. As an

example, Figure 4 shows the CDFs of the TrustRank scores

of honest and attacker devices with 𝑐 = 8,𝑚 = 1. There is

a strong separation of over an order of magnitude between

the TrustRank scores of honest and attacker devices.

Next, we determine a uniform cut-off threshold across

all our attack scenarios (the vertical red line in Figure 4),

by maximizing the sum of the true positive and the true

negative rates across all attack scenarios (see §4.1). For our

dataset, this optimal threshold was 0.0000995. As shown

later, this single threshold was very effective across all our
attack scenarios. This indicates that, in practice, where the

actual attack is unknown, one could still determine a useful

threshold by simulating a limited number of possible attacks.

Above, we used ground truth about all honest devices to
calculate the global threshold. In practice, the threshold can

be approximated by adding simulated attackers to a subset

of the encounter data limited to a few that are known to

be honest. To confirm that this suffices, we recomputed the

threshold on sample sub-datasets featuring only a small, ran-

domly chosen subset of 25 honest devices (<3% of devices)

and all the attack devices. This threshold was nearly as ef-

fective as our optimal threshold in separating honest and

adversary devices.
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Figure 4: Precision radius (𝑅) as a function of the number of independent witnesses (𝑁 ) for different location
reporting frequencies, encounter densities and adoption rates. [Legend: 10-th percentile, median, 90-th percentile].

(a) Varying average location reporting frequencies: 1, 3 and 5 mins. Adoption rate fixed at 20%. Points in each graph sampled
from visits with encounter densities close to the median for this adoption rate, which is 11 encounters in 10 minutes.

(b) Varying encounter densities: 20, 40 and 50 encounters in 10 minutes. Sampled from a simulation with adoption rate 20% and
average location reporting frequency 3 minutes.

(c) Varying adoption rates: 10%, 20% and 40%. Average location reporting frequency fixed at 3 minutes. Points in each graph
sampled from visits with encounter densities close to the median for this location reporting frequency and the respective
adoption rate (9, 11 and 14 encounters in 10 minutes).

TrustRank effectiveness. Table 1 shows that with the

threshold computed above, we can correctly identify most

honest devices (columnTP) andmost virtual devices (columns

TN), across all our attack configurations (we do not show

results for𝑚 > 16 as those are nearly identical to those for

𝑚 = 16). The fraction of correctly identified honest devices

is consistently around 0.93, independent of the attack, again

suggesting that our selection of a global threshold is robust.

The fraction of correctly identified fictitious devices is

consistently above 0.998, even when 𝑐 = 4 devices or nearly

0.5% of all real devices are corrupt. Even with 𝑐 = 8 (nearly

1% corrupt devices), 0.957 of all fictitious devices can be

detected. Thus, for adversaries that are limited to a small
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Figure 4: CDF of TrustRank values for honest and at-
tacker devices (corrupt and fictitious). Our threshold
(the vertical red line) is computed using data from
many simulated attacks.
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Table 1: TrustRank effectiveness with 𝑐 corrupt devices,
each with𝑚 Sybils. TP = fraction of correctly identified
honest devices. TN = fraction of correctly identified
virtual devices.

c m TP

TN

Sybil Fictitious

1

1 0.929 0 1

8 0.930 1 1

16 0.930 1 1

2

1 0.930 0.5 1

8 0.931 1 1

16 0.931 1 1

4

1 0.929 0.25 0.998

8 0.931 1 1

16 0.931 1 1

8

1 0.927 0.125 0.957

8 0.930 1 1

16 0.930 1 1

fraction of corrupt devices, which we assume to be the case

in our defense, TrustRank is nearly perfect at eliminating

the threat of fictitious devices.

Finally, Table 1 shows that our edge-weighting scheme

with 𝐿 = 3 correctly discourages high numbers of Sybils

per host by harming the adversary: With 8 or more Sybils

per host, the TrustRank scores of all Sybils fall considerably,

causing all virtual devices to be detected. This shows that

our edge-weighting scheme works as intended.

As mentioned in §4.1, the ideal strategy of an adversary

is actually to activate the Sybils on a corrupt device one at

a time at epoch granularity, distributing trust as evenly as

possible among them. Assuming that the average TrustRank

of a real device is 𝑠 and the TrustRank threshold is 𝑇 , the

number of Sybils an adversary can sustain per corrupt device

without detection is 𝑠/𝑇 . In our experiments, this ratio is

close to 10.6 in all attack scenarios, which indicates that it is

not very sensitive to specific attacks.

6.3 Computational resources
We ran TrustRank over the DTU dataset plus the simulated

attacks in under 1min on a single, standard server-class ma-

chine. As to the location proofs, their cost is dominated by the

isochrone computation (about𝑁 ×23𝑠). However, the current
computation is not optimized: it computes each isochrone

from scratch relying on off-the-shelf Python APIs, and it does

not store results that can be (partially) re-used to compute

future location proofs in the same space-time region.

We believe that the computation can be considerably opti-

mized for a production system, and scaled out easily. In fact,

algorithms like TrustRank or PageRank are well-studied, and

can run on enormous graphs (e.g., in production, TrustRank

weights would be added to each edge incrementally, as each

new data point arrives). Furthermore, the feasible region

computation can be truncated once the feasible region grows

beyond a pre-determined size (very large regions are not

useful in practice), and the feasible region computation can

also be trivially parallelized.

7 RELATEDWORK
ProLoc differs from prior work on location proofs in two

ways. First, all prior work provides proofs of presence at a

point using interaction with fixed infrastructure or other de-

vices exactly at the point of interest, which may not always

exist. ProLoc instead provides proofs of presence in a (quan-

titatively sized) region using information about interaction

with other devices close to the region of interest, not at a

specific point, which is a more realistic requirement. Second,

ProLoc provides a defense against (retroactive) collusion at-

tacks on location proofs even when the adversary simulates

virtual devices, a scenario that prior work did not consider.

Infrastructure-based location proofs. Saroiu et al. [31]

articulate the importance of location proofs as enablers for

reliable location-based services, and describe six applications.

They sketch a method to produce location proofs using WiFi

access points (AP). VeriPlace [26] also uses WiFi APs, but

improves privacy by hiding clients’ identities from APs and

allows users to disclose approximate locations to services.

Hasan et al. [20] augment WiFi AP-based location proofs

with endorsements from nearby devices in BT range, to raise

the bar for collusion attacks among devices and APs. A simi-

lar technique is described by Ferreira et al. [14].

CREPUSCOLO [13] relies on BT witnesses and trusted

devices (TDs) placed at strategic locations that users are

expected to encounter frequently. If a location proof has

a TD as witness, the resulting proof is collusion-resistant.

However, proofs for locations out of range of a TD rely on

ordinary witnesses, and offer no protection from collusion.

Many prior works have addressed infrastructure-based

location proofs in the context of vehicular networks [12, 18,
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24, 37]. Pham et al. [30] and Maia et al. [27] describe location

proofs for specific applications, namely proof of activity

(e.g., distance/elevation traveled) and smart tourism (e.g.,

verifying that a tourist has visited certain sites), respectively.

In contrast, ProLoc does not require infrastructure for

location proofs; it relies solely on peer devices’ histories.

Infrastructure-less location proofs. Other prior work [10,
15, 28, 33, 35, 38] relies on BT witnesses and suggest or in-

clude collusion defenses. APPLAUS [38] suggests weighted

witness quorums where a device’s trust level depends on its

history of witness choice, relative to the reported density of

location proofs nearby in space and time. LINK’s [33] per-

device trust scores increase additively when a device votes

with the majority in a successful proof, and diminish multi-

plicatively when the device acts suspiciously. STAMP [35]

computes a per-device entropy value, which reflects the di-

versity and randomness in the device’s witness selection

and is additionally boosted whenever the device participates

in a location proof that is confirmed by a trusted device.

Arunkumar et al. [10] check if the near-range radio contacts

and trajectories reported by all devices are consistent, and

compute a trust score based on the ratio of encounters in

which the device reports consistent information. A device’s

location is considered confirmed if the witness with the high-

est trust score agrees. PROPS [15] and PASPORT [28] do

not consider collusion between witnesses and provers; their

defenses work when either the witnesses or the prover is

malicious. All these systems are vulnerable to attacks with

fictitious devices, which can fabricate plausible trajectories,

encounters, witness selections, and even proofs involving

trusted devices using a small number of corrupt devices and

Sybils, thus acquiring trust to the point where they are in-

distinguishable from honest devices.

Hardware-based location proofs Some prior work relies

on a hardware root-of-trust (e.g., TPMmodules) onmobile de-

vices to ensure the integrity of location readings [16, 29, 32].

Some work has addressed GPS spoofing in specific contexts

like aviation (Crowd-GPS-Sec [22]) and mobile games [36].

Gonzálex-Tablas et al. [17] provide a survey of location au-

thentication protocols and spatial-temporal attestation ser-

vices. In contrast to these, ProLoc does not require trusted

hardware on the devices.

8 CONCLUSION
ProLoc enables a mobile service to compute retroactive lo-

cation proofs by integrating devices’ trajectories and en-

counters. ProLoc computes a feasible region, including the

locations at which the device could plausibly have resided

at the time, and it does so in a principled manner from the

set of encounters the device had around the time and its

peers’ trajectories. Moreover, ProLoc mitigates large-scale

collusion involving fictitious devices and Sybils, effectively

limiting the adversary’s power to a small multiple of the cor-

rupt physical devices it controls. As a result, even a powerful

attacker is very limited in its ability to retroactively gener-

ate false proofs. Finally, we sketch how to extend ProLoc’s

defenses to premeditated attacks, although a full treatment

of such defenses remains as future work.

A EDGE-WEIGHTING SCHEME
In §4.1, we described an approximation of our actual edge-

weighting scheme for defeating Sybil multiplicity attacks.

Here, we describe the actual scheme. This scheme also uses

a time window𝑤 (typically 8 minutes), but it does not divide

time at each node into discrete epochs to distribute edge

weights. Instead, it considers infinitesimally small epochs

over intervals [𝑡, 𝑡 + d𝑡] at each node 𝑔. In each such epoch,

𝑔 gives some weight to the outgoing edge towards every

device 𝑑 from which 𝑔 has received an advertisement in

the vicinity of 𝑡 , specifically, in the interval [𝑡 − 𝑤/2, 𝑡 +
𝑤/2]. The weight given to each such edge in the epoch is

𝑑𝑡/(# such devices)𝐿 . The total weight of the outgoing edge

towards 𝑑 is the integral over time of these infinitesimally

small weights.

One additional difference from what we described in §4.1

is that we cap the weights of edges to prevent any device

from getting too much trust from a single device. Figure 5

summarizes our revised edge-weight function, 𝑒 (𝑑,𝑔).
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